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Abstract. The idea of the systematic Weisskopf-Wigner approximation as used sporadic- 
ally in atomic physics and quantum optics, is extended here to the interaction of a field of 
non-relativistic fermions with a field of relativistic bosons. It is shown that the usual 
(non-existing) interaction Hamiltonian of this system can be written as a sum of a 
countable number of self-adjoint and bounded partial Hamiltonians. The system of these 
Hamiltonians defines the order hierarchy of our approximation scheme. To demonstrate 
its physical utility we show that in a certain order it provides us with a satisfactory quantum 
theory of the ‘self-energy’ of our fermions. This is defined as the binding energy of bosons 
bound to the fermions and building up the latter’s ‘individual Coulomb or Yukawa fields’ 
in the sense of expectation values of the corresponding field operator. In states of more 
than one fermion the bound photons act as a mediating agent between the fermions; this 
mechanism closely resembles the Coulomb or Yukawa ‘forces’ used in conventional 
non-relativistic quantum mechanics. 

1. Introduction 

In the following we treat once more the old problem of the interaction of two 
quantised fields. We want to analyse the potentials of two ideas which in general have 
not yet been tested in quantum field theory, it seems. 

Let us first describe the physical problem. We consider a ‘Schrodinger field’ S of 
non-relativistic, scalar fermions of mass M > 0 and charge -e < 0, called ‘electrons’. 
Let +(x, t )  and $t(x, t )  denote the Heisenberg operators of the field amplitudes of S 
which satisfy for any t the usual equal-time anticommutation relations 

{rL(x, t> ,  $tb, = w - Y  >, {$tk t ) ,  $tb, t ) )  = (4% t ) ,  4b, t) l= 0. ( l a >  
(Natural units h. = c = 1 are used throughout.) S shall interact with a ‘radiation field’ R 
of relativistic, scalar bosons each of mass CL 20, to be referred to as ‘photons’. Let 
E(x,  t )  and A(x, t )  be the Heisenberg operators of the canonical momentum and 
position amplitudes of R, respectively. They have the same dimensions as the electric 
field strength and the vector potential of electrodynamics and play an analogous role 
in the Hamilton formalism, hence the notation. We assume they satisfy for any t the 
equal-time commutation relations 

t ) ,  A b ,  t ) l=  -iS(x - Y ) ,  [E(x, t ) ,  Eb, t)l = [Ab,  t ) ,  Ab, t ) ]  = 0. Ob)  
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The ‘mixed’ equal-time commutators must vanish in all cases: 

[IL’(x, t ) ,  E b ,  t ) l= [+t(x, t ) ,  A b ,  t>l= [rl(x, t ) ,  E b ,  t ) l= [4(x, t ) ,  Ab, t > l =  0. (IC) 

S and R interact in the presence of a given, prescribed, static, integrable and square 
integrable, real ‘charge density’ Zej(x), where Z is an arbitrary, real number and j ( x )  
satisfies 1 d3xj(x) = 1 if Q := Ze d3xj(x) f 0. 2 and j ( x )  remain unspecified if Q = 0. 
The Heisenberg equations of motion of the interacting system (S, R, Zj(x)) are 
assumed to read 

d A 
i-qG(x, t ) =  ---eA(x, t ) ) $ ( x ,  t ) ,  dt ( 2M 

@ - C L ~ ) A ( X ,  t)=eZj(x)-e4t(x,  t)rL(x, t )  (2b) 

where A = Vz is the Laplace operator and U:= A-a2/at2.  For e = 0 the system 
(S, R, Z j ( x ) )  decays into independent subsystems S, R, Zj(x) which are governed by 
the Schrodinger equation for free electrons, the Klein-Gordon equation for free 
photons, and dj(x)/dt = 0, respectively. We see from (2b) that for e > 0 the ‘external’ 
charge Z j ( x )  as well as the electron field S play the role of ‘sources’ of the photon field 
R. Equation (2a) tells us that the position amplitude A(x, t) of R plays the role of 
‘potential’ for the field S of electrons. 

Formally, the equations (2) can be obtained as the Hamilton equations of motion 
corresponding to the Hamiltonian 

H = w*+, *, E, A )  

:= I d3x+ht(x)( -z) t ,b(x)+$/  A d 3 ~ [ E ( x ) Z + ( V A ( x ) ) 2 + p 2 A ( ~ ) 2 ]  

These operators are given, once and for all (cf 0 2), and serve as ‘initial values’ of the 
corresponding Heisenberg operators. Therefore the equations (2) must be solved 
under the initial conditions 

Only this one particular solution of (2) can be considered as ‘physical’, provided that 
solutions exist at all. It is easy to write it down in a formal way. The expressions 
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satisfy (1) and (2) if a unitary time evolution operator U(?)  exists which satisfies 

U(O)= 1. 
d 

i- U ( t )  = HU(t),  
dt (7) 

From the mathematical point of view we know (e.g., Kat0 1966, p 478) that 
U(t):= e-ifH exists if H is self-adjoint, and conversely, that a self-adjoint generator H 
exists if the unitary time evolution operator U(t )  exists (Stone’s theorem, see e.g., 
Yosida 1968). However, it is probably futile to search for this ideal solution because 
H seems to be hopelessly non-existent as an operator on a Hilbert space. On the 
other hand we know that field theories contain ‘a lot of truth’. This forces us to 
formulate some compromise, and it is in the tricky details of this compromise where 
we want to test the power of the ideas we are announcing initially. 

The first idea consists of the introduction of an external charge Z e j ( x )  instead of an 
external field, e.g. the classical Coulomb-Yukawa field 

of this charge. We show in an appendix that the present theory can be considered as a 
special case of three interacting quantum fields in which one field is degenerated so 
strongly that its quanta neither move nor show any reaction upon the quanta of the 
other fields. Such a theory leads immediately to external charges like Zej(x), but not 
to external fields like V(x) .  This difference is essential (cf §§ 3,6,8) because in 
connection with the second idea to be tested it allows us to suggest a solution of the 
self-energy problem for our electrons. It is fairly well known (e.g. Glauber 1951, 
Friedrichs 1953, Cook 1961) that an external charge ‘dresses’ itself with ‘bound’ 
(Cook 1961) photons in a coherent state (Friedrichs 1953, Glauber 1963a, b), this 
state being such that V ( x )  is obtained as the expectation value of A(x) in it (cf § 6). 
We show in § 7 that in a similar way also the electrons ‘dress themselves with bound 
photons’ which build up their ‘individual Coulomb-Yukawa fields’ in the sense of 
expectation values of A(x) in the state of the bound photons. The binding energy of 
these photons is the self-energy of the electron (see § 10 for a comparison with other 
definitions). In addition, the photons bound to the electrons act as a mediating agent 
between any two electrons as well as between any electron and the external charge. 
This action resembles closely (09 7, 9) the conventional Coulomb-Yukawa ‘force’. It 
is clear, however, that any bound photon is simultaneously bound to any electron as 
well as to the external charge. This simultaneous photon binding causes the ‘binding 
of the electrons to the external charge’ which means the formation of an ‘atom’. We 
get a satisfactory ‘screening’ of the external charge by the electrons bound to it by 
means of bound photons (08). In the case of a ‘neutral’ atom the usual infrared 
problem also disappears (0  8). 

However, these self-energy and binding effects obviously do not yet exhaust the 
set of all phenomena which are described by our model. Therefore they must be 
determined and classified in accordance with some ‘ordering principle’ which defines a 
classification scheme for the effects described by our model. This brings into play the 
second idea to be tested here, the use of the ‘Weisskopf-Wigner approximation 
scheme’ which has been systematised by Grimm and Ernst (1974,1977) and Stelzer et 
a1 (1977) for the interaction of real atoms and real, transverse photons. We show that 
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the idea of this approximation scheme can be extended to our interacting fields 

We proceed as follows. As H commutes with the electron number operator S (cf 
(00 4’5). 

Q 2) it ‘decays’ necessarily into a ‘direct’ sum (e.g. Achieser and Glasman 1968) 
00 

H = $ H S  
s = o  

of Hamiltonians H’ which act formally on the eigenspaces Xs of S for the eigenvalues 
s = 0 , 1 , 2 ,  . . . . This corresponds to the decomposition 

x= $ X S  
s = o  

of the Hilbert space X of ( S ,  R, Zej(x)) in terms of these eigenspaces. The sector 2’ 
is basically the Hilbert space of the vectors which describe s electrons in any state in 
the presence of any number of photons in any state. H is self-adjoint on X if all H s  
are self-adjoint on their sectors, but this can certainly not be hoped for. So we shall be 
content with the following mathematical surrogate. 

We show first ( 8 0  3,4)  that any H’ can be written in the form 

H’ = w”Q; +QL)(wS)+ (10) 

where W s  is unitary on X’ for CL > 0, and at least ‘formally well defined and formally 
unitary’ for CL = 0 (cf Q 6). It transforms from the conceptual level of external charges 
to the auxiliary level of external fields like V ( x )  whose introduction is convenient. On 
this level AS, is an unbounded, but still self-adjoint operator, and nT, is the critical 
interaction Hamiltonian. The core of the Weisskopf-Wigner approach (cf Grimm and 
Ernst 1977) consists of the fact that l?& can be ‘expanded’ formally like 

AT, = c L; (1 1) 
p = l  

where each term L: is a self-adjoint and even bounded ‘partial interaction Hamil- 
tonian’ on Xs.  If Xs denotes any partial sum of a finite number of L;, +Z,” is 
self-adjoint again. By including in Xs an increasing number of L; we thus can 
‘gradually exhaust’ the information contained in without ever meeting any diver- 
gence. This allows us to define the auxiliary total Hamiltonian of the ‘exact’ 
theory as the potential limit of A; +Zs as more and more terms are included in X’. 

We now have the prospect of two directions in which to continue. It is natural to 
analyse the convergence of the operator sequence Ri + Xs against the hypothetical 
‘exact’ n:x. However, for practically the same reasons as discussed by Grimm and 
Ernst (1977), Stelzer et a1 (1977), and Ernst (1978) the potential results are hardly 
worth the effort that is probably needed to get them. The unrealistic features of our 
model also do not suggest we should do too much work in this direction. We prefer 
therefore an evaluation of the physical content of the theories which are defined by 
certain partial sums X’. It is namely anything but trivial that these Xs define reason- 
able, ‘natural’ classes of physical phenomena which deserve attention and interest 
even if the convergence problems of (11) are not yet solved. The above self-energy 
and photon binding effects provide an example of such a class which is defined by one 
particular H’ (cf 0 6). This proves that the ‘expansion’ (11) employs and reveals 
‘natural structures’ which provide a natural classification scheme for the phenomena 
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described by the model. It allows us to reveal at least 'partial truths' about interacting 
fields which have not yet been obtained by any other method. In particular, it appears 
to offer the prospect of an alternative to perturbation theory (cf 0 10). 

The models of Nelson (1964), Frohlich (1973), and Schroeck (1973,1975) are the 
closest analogues of the present model, but they have been treated from quite 
different aspects. Our model resembles many features of the covariant Gupta-Bleuler 
form of quantum electrodynamics. An extension of the present formalism in that 
direction seems to be possible and work is in progress to this end. 

2. State space and operators of the interacting fields S and R 

We define first the general mathematical framework in which the problem of our 
interacting fields will be formulated. 

It is well known that the anticommutation or commutation relations of a free 
Fermi or Bose field can be represented easily on corresponding Fermi or Bose Fock 
spaces which then serve as 'state spaces' of these physical systems. In our case this 
means that the Schrodinger operators J/+(x) ,  J / ( x )  of S which satisfy (4a), are con- 
structed on a Fermi Fock space ,CFs whereas the Schrodinger operators E(x) ,  A(x) of 
R which satisfy (4b), are constructed on a Bose Fock space FR. Following first 
principles of quantum mechanics (see e.g. Jauch 1968) the state space X of the system 
(S,R) obtained by conceptually uniting the fields S and R, is the tensor product 
X:= 9~0.9~ of the state spaces of the 'isolated' systems S and R. This holds 
independently of their potential interaction, and independently of this we also require 
the mixed commutation relations (4c). We show in the appendix that these require- 
ments remain reasonable in the presence of an external charge Z j ( x ) .  

As far as possible, all operators of (S, R, Z j ( x ) )  should be defined on X. Therefore 
we begin the discussion with the construction of a realisation of X, For this we 
consider first the set 5' of double sequences 

a := {a(Xs; K " ) ;  n, s = 0,1 ,2 ,  . . . } (12) 

of 'components a(Xs; K " )  of a' with the following properties: Xo, KO stand for 
the empty sets 0, 0 and a(Xo; KO):= a ( 0 ;  0) is a complex number. K" is 
short for the set kl,. . . , k, of n photon variables k , € R 3 ,  Y =  1 , .  . . , n. 
a(Xo; K"):= a ( 0 ;  kl, . . . , k,) is for any n 1 a complex valued, symmetric function 
of the k, which is defined almost everywhere (AE) on an R3". Xs is short for the set 
x1 ,..., x, of s s l  electron variables x,cE3, u = 1 ,  . . . ,  s.a(Xs;Ko):= 
a(xl, . , . , x,; 0) is for any s L 1 an antisymmetric, complex-valued function of the 
x, which is defined AE on an R3'. Finally, a(Xs; K"):= a ( x ~ ,  . . . , x,; kl, . . . , k n )  
is for s 3 1, n 1 a complex-valued function of the x, and the k, which is antisym- 
metric in the x,, symmetric in the k,, and defined AE on R3, X R3". We make a linear 
vector space of "Ir by defining the sum a+a' of two elements by (a+ 
a')(Xs;  K"):=  a(XS; K")+a' (X ' ;  K " )  and the product ca of a E "Ir with c E 63 by 
(ca)(Xs;  K"):=  ca(Xs; K " ) ,  both of course for any s, n = 0 , 1 , 2 , .  . . . We shall 
frequently have to deal with quantities which are delined only on 5' which is not a 
Hilbert space. 

Consider now elements a E 5' with the following properties: a(Xo; KO) as above, 
a ( X o ;  K " )  square integrable in the k, in the elementary Lebesgue sense on R3" (if 
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nothing else is stated explicitly, all integrals occurring in this work are to be under- 
stood in this sense), a(Xs; KO) square integrable in the x, on R3', and a(Xs; K " )  
square integrable on [w3' X R3" for any s a 1, n a 1. The components a(Xs; K " )  of a 
are now elements of well defined Hilbert spaces Zs" of square integrable functions or 
of the trivial Hilbert space eo = C. We take Xs" as the representative of the abstract 
Hilbert space XZ@X: of a system of s electrons and n photons. A realisation of the 
Hilbert space X =  of our system ( S ,  R, Z j ( x ) )  is defined as the direct sum 

This means that X is the subset of all la) E V which satisfy 

s=o n = O  

with 1 1 .  , .I) denoting the usual norm on X'". The Dirac ket bracket I .  . . ) is restricted 
to elements of X. In terms of these quantities the s-electron sectors Xs in (9b)  are 
given as the Hilbert spaces 

In general we shall not distinguish between abstract Hilbert spaces and their particular 
realisations. 

We consider now the operators to be used. Following Friedrichs (1953) we 
formally define $(x) and $'(x) by 

($(x)a)(XS; K"):= (s + 1)1'2a(x, xs; K"), (15a) 

(15b) 

for any s S O ,  n S O .  (x, Xr) is short for the set (x, xl,. . . , xS) of s + 1 electron 
variables and (Xr\x,) for the set (xl,. . . , xu-l, xu+t,. . . , x,). The right-hand side of 
(15b) is zero for s = 0. It poses no problems to show that these operators satisfy (4a) .  
They are defined only as distributions on Y', but certain functionals of them may lead 
to well-defined operators on X For example, if in the first expression 

1 "  ($+(x)a)(xs; K " ) : = 7  1 (-1)"S(x -x,)a(XS\xu; K " )  
U =  1 

W 

S := d3x+'(x)$(x):= @ s I s=o 

for the operator S of the number of electrons we first apply +(x) as defined by (I%), 
then ++(x) as defined in (15b), then integrate over all x, we obtain (Sa)(Xr; K " )  = 
sa(XS; K").  In agreement with this we may finally define S as the direct sum of the 
operators of multiplication with the numbers s as indicated by the last expression for 
S. This decomposition corresponds of course to the decomposition (96) of %'. 

Using the similar symbols (k, K"):= (k, kl, . . . , k"), (K"\k,):= (kl, . . . , kV-1, 
kV+l,. . . , k,) we define photon annihilation and creation operators a ( k ) ,  a'@) by 

( a ( k ) a ) ( X S ;  K"):= (n + 1)1'2a(xs; k, K") ,  (17a) 
1 "  

(a ' ( k ) a ) ( X S ;  K"):= -p S(k -kv)a(XS; K"\k,). (176) 
v-1  
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These operators satisfy by definition the usual commutation relations [a (k), at(k')] = 
S(k - k') etc. We use them and the abbreviation w(k) :=  (k2  + p2)l/' to define formally 
the Sehrodinger operators of the field amplitudes of R by 

These operators satisfy of course (4b)  and (4c),  the latter together with (15). If, as 
above, we understand (18) as prescriptions to apply on an arbitrary I C Y ) €  X first (17), 
then multiply by the functions e*iLx, subtract or add the results, multiply by the 
functions of o ( k )  indicated, integrate over k, and finally multiply by the numbers in 
front of the integrals, we get unique expressions for E(x)la), A(x)la). However, they 
are in general not elements of sip, but only well defined elements of V. This holds at 
least for a dense set of la) E X, and this is sufficient to carry out unique and meaningful 
algebraic procedures with E(x) ,  A(x). 

Introducing now the abbreviation 

and 'computing' in the above sense the Hamiltonian H we find 

1 
2M (Ha)(X'; K " ) = ( o ( k l ) + .  . .+w(k , ) )a (X ' ;K") - - (A l+ .  . .+AS)a(Xs; K " )  

The sums over U and v are to be understood as zero for s = 0 and n = 0, respectively. 
The usual zero-point energy has been omitted. 

Equation (20)  shows explicitly that the sectors 2f of X are invariant under H. So 
we can indeed write H in the form (9a) with H' now defined by the right-hand side of 
(20), i.e. by (Hsa) (Xs ;  K") = (Ha)(X'; K") for any a E P. We note further that if 
j (k) / (2w(k)) ' /*  is integrable on R3, a condition which is satisfied in practically any 
case of interest, then (H'a)(X'; K") is an AE defined function of X', K" for a dense 
set of a E X'. So we have H'a E V, but W a g  X' for any a E %?, a # 0. This is the 
origin of the divergence problems of the present field theory. Writing H in the form 
(20)  does of course not solve these problems, but it allows more insight into their 
nature and thus permits 'physically motivated attacks' upon them. 
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3. Transition from ‘external charges’ to ‘external fields’ 

For an appreciable part of this work it will be convenient to argue on the conceptual 
level of external fields though finally we must return to the ‘true’ level of external 
charges. We now discuss the relations between these conceptual levels. 

For this we note that the operator Hi” defined by the first and the third terms on 
the right-hand side of (20), can be written in the form 

Here the a’s are understood to be defined by (17) for fixed s, i.e. on X’ only. The first 
term Hb alone defines a self-adjoint operator on Z“. Considered alone the last two 
terms define a self-adjoint operator on Xs if and only if j ( k ) / ( 2 ~ ( k ) ) ~ / ~  is square 
integrable. The proof of this is a verbal repetition of the proof of Cook (1961) where 
Hs is considered on a Fock space. If Hs itself is to be self-adjoint, f(k) must satisfy 
further conditions. It is suggestive to write it in the form 

Hs = / d 3 k w ( k ) ( a t ( k ) + f ( k ) * ) ( a ( k ) + f ( k ) ) - E F  (21b) 

E: := Z 2 e 2  / d3klf(k)12/2~(k)2.  

W{f(k)l:= exp( / d3k(f(k)a t (k> - f (k)*a ( k  1)) 

with the abbreviations 

f(k):= ~ e , y k ) / ( 2 ~ ( k Q / ~ ,  ( 2 2 )  

(23) 

The ‘completion of the square’ is legitimate (Cook 1961) if E: is finite and f ( k )  square 
integrable. In the latter case the unitary Weyl operator 

(24) 

exists on Xs and satisfies on Xs the relations 

In terms of the quantities introduced we can write 

Hf = W’{-f(k)}(-E? + H i ) W ’ { f ( k ) } .  

We learn that Hf is self-adjoint if W { f ( k ) }  is unitary, i.e. f(k) square integrable, and 
E? finite. 

It appears natural to extend the form (21c) of Hi” to the total Hamiltonian H ”  on 
XS, i.e. to introduce another Hamiltonian Rs so that 

H” = w ” { - f ( k ) } A ” W s { f ( k ) } .  (26 )  

If f ( k )  is square integrable the operatoi 
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is unitary on X and we can extend (26) even to 
operator 

m 

A = W{ f(k)}HW{- f(k)} = @ AS. 
s = o  

319 

X by introducing the auxiliary 

Applying this to (3) and using essentially only (25) we find 

+ $1 d3x(E(x)+ E’(x))’ + (VA(x)+ VA‘(x))’ + p2(A(x)+ A’@))’ 

+ e j d3x (Zi(x> - 4’ ( ~ 1 4  (x ))(A (x) + A ’ (x )I. (29a) 

E’(x) ,  A’(x) are the c-number functions obtained by replacing in (18) the operators 
a (k)  by - f ( k )  and a t (k)  by - f (k)* .  We show in Q 6 that this means A’@)=  V ( x )  (cf 
(8)). We further find the identities 

5 d3~[E’ (x )E(x )+(VA’(x ) )@A(x) )+p2A‘ (x )A(x ) ]  = -2e J d3xA(x)j(x), (30a) 

t J d3x[E’(x)’ + (VA’(X))’ + ~ ’ A ’ ( x ) ~ ]  = J d3kw(k)l f(k)(’ = E:, (306) 

Ze d3xj(x)A‘(x)= -2E7. I 
Inserting this into (29a) we get 

A = I d3x4 +i , t  (x) - - -eV(x) )$(x) -EB 

+$I d3x[E(x)’+(VA(x))’+p’A(x’)]-e  5 d3x~t(x)A(x)+(x) .  (296) 

The external charge Zej(x) has disappeared. Instead of it we now have the external 
potential V ( x )  and the irrelevant constant -E;. 

For the remainder it will be convenient also to write I? as a direct sum of operators 
As acting on the sectors X s  (cf (28)). Using the same methods as in the derivation of 
(20) we find 

(ASa) (XS;  K”) 
= ( w ( k 1 ) + .  . . + w ( k ” ) - E : ) a ! ( X S ; K “ )  
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The same is obtained by applying (26) immediately to (20). In particular, we have 
omitted the same zero-point energy. 

4. The fine grain Weisskopf-Wiper expansion 

In Q 3 we have verified the form W'(l% +%)(W'))' of H' as announced in (lo), I% 
being defined by the first and second terms, fl; by the last term on the right-hand side 
of (31). In comparison with the familiar forms (29b)  or (3) of R or H, the respective 
expressions (31) or (20) may appear clumsy and complicated. But they exhibit more 
mathematical structure and thus allow the use of methods of functional analysis which 
are now employed to verify our statements on the 'fine grain' Weisskopf-Wigner 
expansion (1 l) ,  the mathematical core of this work. 

For this it will be convenient to introduce other representatives of the states of the 
system (S, R, Z j ( x ) )  than used up to now. Consider the stationary Schrodinger equa- 
tion 

of an electron in the external potential V(x) .  The index a comprises all atomic 
quantum numbers which completely specify an eigenstate ua (x) corresponding to an 
eigenvalue Ea. If eigenstates exist we assume them orthonormal, but in general not 
complete in the Hilbert space 2'; = %(R3) of the theory defined by (32). But we can 
always complement them to an orthonormal base 9; of 2'; by introducing further 
elements ua(x )  where a of course no longer comprises atomic quantum numbers. 
Denote by {a}  the set of the indices a of all elements U,(.$) of 9;. 

Consider now any set A' := (a1, . . . , a,) of s different elements a E { a }  and denote 
by [A"] their 'class', i.e. the set of the sets A' obtained from a given A' by permuting 
only the elements a, of this A'. In each class we elect one arbitrary 'class represen- 
tative' A' and define for it the function 

p, T =  1 , .  . . , S. (33) 
1 U(A';  X'):=-f det uaP(x7), 

(s !) 
The set of all these determinants, one for every class [A'], forms an orthonormal base 
9; of 2';. So any element f ( X ' )  of 2'; can be expanded in the form 

f (X ' )  = 1 F(A')U(A'; X') .  (34) 

By definition 
given by 

with 5 dX' . . 

[A']  

the sum contains one term for any class. The expansion coefficients are 

F(A') :=  dX'U(A'; X')*f(X') (35) 

. :={d3x1..  . 5d3x,. . . . We note that U ( A ' ; X ' )  as well as F ( A " )  are 
antisymmetric in the a,. A common permutation of the a, in both factors in (34) 
therefore changes nothing. The sum over all classes can therefore be written in the 
form of a conventional multiple sum 
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The F ( A s )  are the components of another representation of the abstract Hilbert space 
of s electrons. Similarly we can represent a state a E X s  by components a(AS; K") 
instead of the a (X'; K") introduced in (12). In this representation the operator As is 
given in terms of the elements 

(Rsa)(As; K"):= dXsU(As;  Xs)*(l?sa)(XS; K"), (37) 

the a(Xs; K") occurring in R h  being expressed by (34) in terms of their a(As;  K"). 
Starting with the first and second terms in (31) and proceeding along these lines we 

find, for Ai, with the abbreviation 

the final form 

(Rb)(As;  K") 
= ( ~ ( k l ) + .  . . + w ( k n ) - E $ ) ( r ( A S ; K " )  

S 

+ 1 1 T(a,a,)ol(As:ua,-*a;K").  
oa{a )  u=l 

(39) 

(As :a ,  + a )  stands for (al, . . . , 
find 

(ALa)(A'; K") 

U ,  a,+l, . . . , as). Computing Rt  similarly we 

= ( (n+1) ' /21  d3kM(a,,a;k)a(AS:aa,-*a;k,K") 
a c b )  u=1 

with the abbreviation 

Equations (39) and (40) are the starting points of our considerations. Therefore 
we note their relevant properties. 

(i) The first term in (39) defines the Hamiltonian of free photons. It is self-adjoint 
for E: <CO. The second term is the Hamiltonian of s electrons without mutual 
interaction, but in the external potential V ( x )  (cf (31)). It can also be considered as 
self-adjoint in any case of interest. As these operators act effectively only on the 
factors 9~ and Reg of Rs, their sum Ai is self-adjoint again. 

(ii) If at least one of the two states U,(%), ub(x)  in (38) is an eigenstate of (32) we 
get T(a, b ) =  E,& and the corresponding sum over a in (39) can be carried out 
readily. If all a, in As  refer to eigenstates of (32) the second term of (39) yields simply 
(E,,+. . .+E,,)cr(A';KK=). 

(iii) We shall assume that the eigenstates ua(X) of (32) as well as all other elements of 
3; are such that M(a, b ;  k )  is  square integrable in k for any a, b E {a}, {a}. This is 
decisive (cf Grimm and Ernst 1974, 1977) for all that follows. Grimm and Ernst 
(1974) have proven the square integrability of the quantities which in the case of the 
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Dirac atom correspond to our M(a,  b ;  k ) .  Orthonormal bases 9; in %: =Z2(R3)  
leading to square integrable M(a ,  b ;  k) can be found easily. It is not easy, however, to 
find a reasonable V ( x )  such that the eigenstates of (32) do not lead to square 
integrable M’s. 

(iv) As the summation index a in (40) runs over the elements a of the A’ named 
on the left-hand side, only the term a =a, yields a contribution because of the 
antisymmetry of a (A’; K”).  This consequence of the Pauli principle is one of the keys 
to the specific results on the self-energy of our electrons (cf 99 7-10). 

We are ready now to show that RL can really be expanded in the form (11). For 
this we use the fact that X” can be decomposed as 

(42) 
%(A’) denotes the subspace of %; which is spanned by the one element U(A’;  X ’ )  
defined in (33). %(A’, n )  therefore is the Hilbert space of all states of n photons 
under the condition that S is in the s-electron state U(A’;  X’), i.e. that each of the 
states ua,(x), . . . , U,@) is ‘occupied by one electron’. Further, let p(As, n )  be the 
projector which maps any element  la)^%' onto its component a ( A s ; K “ )  in 
%‘(As; n ) ,  i.e. p(A‘, n ) / a )  = a(A”;  K“).  Define i(A’; n )  as that operator which 
identifies an element a(A‘;  K ” ) E  %‘(A‘, n )  with that vector of 2’ which has the 
component a ( A ’ ; K ” )  in %(A‘,n), and zero components in all other subspaces 
%(A”, n’) .  The product p(A’, n)i(AIS, n ’ )  is 1 for n = n’ and A” =A’“,  and zero in any 
other case. 

Consider now the map T*(a,- a ;  n w  n + 1) of %(As: a,+a; n + 1) onto 
%(A’; n )  as defined by 

a(AS  : a, -+ a ;  Kn+’)*a(AS;  K”):= ( n  + 1)l” d3kM(a,, U ;  k)a(As  : a, + a ;  k, K“).  
(43a) 

J 
This map is defined everywhere on %(A’ : a, + a ; n + 1) if M(a,, a ; k) is square 
integrable, as assumed. Consider further the map T(a fi a,; n + 1 * n) of %(A”, n )  
onto %(A’ :a, + a ;  n + 1) as defined by 

a(A’ ; K “ )  H a(A’ : a, -+ a ; Knt1) := 
1 n + l  

M(a,, a ;  k,)a(AS; Knil \ky) .  
( n  + 1) lI2  ” = I  

(43b) 
If M(a,, a ; k) is square integrable, as assumed, this map is again defined everywhere 
on %(As; n). Consider finally on %”, for given uss, and given n 3 0 ,  the operator 

L’[(A”; n )* (A”:a ,+a;  n + l ) ]  

:= i(A’, n)T*(a ,  - a ;  n c-i n + l)p(A’ : a ,  + a ;  n + 1) 

+i(A” : a, -+ a ;  n)T(a  * a,; n + 1- n ) p ( A ‘ ;  n). (44) 
It is defined everywhere on 22’’ with range in 22’‘ if M(a,, a ;  k) is square integrable. 
Furthermore it is symmetric on %‘ because (a /L’[ (A”;  n)*(As :a, + a ;  n + l)]ia) is 
real for any la)€ 2’ as verified easily by using the above definitions. So it is self- 
adjoint and bounded on %’’, by a well known theorem of functional analysis (e.g. 
Yosida 1968). 
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Now define the operator % by 
0 0 s  

RL= 1 c Ls[(As;n)~(As:au+a;n+l)]. (45) 
[A’]  aE{a)  n=O u=l 

Using the above definitions it poses no problems to verify that p ( a ;  n)A& ICY) equals 
‘term by term’ the right-hand side of (40). In this sense the operator fik defined by 
(40) equals RL defined by (45). As the right-hand side of (45) contains a countable 
number of terms we can number them through in some sense and obtain in this way 
the operators L; in (1 1) with all stated properties. 

5. The coarse grain Weisskopf-Wigner expansion 

The fine grain expansion (45) of exhibits perhaps more of the ‘fine structure’ of 
the theory than we are interested in. So it is natural to seek ‘coarser’ structures, e.g. in 
the form of useful partial sums 2 of (45) with an infinite number of terms. The 
criterion for ‘useful’ will be that the theory defined by Zs ‘describes’ a characteristic 
class of physical phenomena which are well distinguished from the phenomena 
described by other 2, and that the theory defined by Zs is equipped with a self-adjoint 
Hamilton operator. We now define such 2’ and show that the Hamiltonians defined 
by them are self-adjoint at least for p > O .  Their physical utility is considered in 

Consider some finite subset I of the index set { a }  introduced in 8 4 with a number 
i L S  of elements a, and consider for any s the partial sum C; obtained from (45) by 
restricting the sum over a to the sum over all a E I and the sum over all classes A’ to 
the (f) classes As  which contain only elements au E I. We note that Z; has its range in 
the subspace Xi c &9’, 

$0 7-10. 

oc) 

%e”,:= @ @ X ( A s ; n ) =  @ %(AS))OgR, 
n=O A ’ s 1  A’EI 

provided the infinite sum over n in C; converges at all. The sum over As  covers all 
classes with elements from I only. Due to the projectors p ( A s ;  n )  in the Ls we lose 
nothing if the domain of CSis restricted to Xi c Xes. We note further that the first term 
in (39) can be written in the form l H & O I H &  with a self-adjoint operator ‘ H i I  
acting on Xi and a self-adjoint operator ‘ H &  acting on the complement space 
%‘‘@Xi. Consider finally the second term of (39) and write the sum over a as (sum 
over a E I ) +  (sum over a E ({a}\I)) .  If restricted to Xi the first sum defines on Xi a 
self-adjoint and bounded operator 2H&. The range of the second sum is in any case 
outside Xi, i.e. in Xs 0 X;. Consider now the operator 

A; := + 2H;I +E; (47) 

consisting of parts of (39) and (40). We show below that it is self-adjoint on Xi if 
CL >O. So it defines on Xi a certain quantum theory if it is considered as the ‘total 
Hamiltonian’ of that theory. The ‘coarse grain hierarchy of Weisskopf-Wigner 
theories’ is defined by the sequence of Hamiltonians A;,, Gi2, . . . which correspond 
to a sequence Il c I2 c 1 3  c . . . which finally ‘tends’ to I ,  ={a } .  Note that the Hamil- 
tonians I?; contain more and more terms of the ‘exact’ Rs as I tends to {a}, and that 
no terms of As are left out. 
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We prove now the self-adjointness of I f ;  for any finite I and any p > 0. For this 
we show that Z; is bounded relative to 'Rir +E$ =: I f i r  with bound smaller than 1. 
Rfr is self-adjoint, but not bounded. So Rfr +E; is self-adjoint (Kato 1966, p 287). 
Adding to this any bounded and self-adjoint operator we get a self-adjoint operator 
again. In our case we add -E: +'H& to obtain E f ;  together with its self-adjointness. 

To show that Z; is bounded relative to RL we note that RL is defined by 
a(As;  K " ) + ( w ( k l ) + .  . .+w(k,))CY(AS; K " )  SO that because of w ( k l ) + .  . . + w ( k n ) b  
np  it satisfies for any ( P )  E 9(H; I )  the inequality 

IlHfr IP>II 2 P l l N  IP>II, i.e. 9 W t )  E 9 ( N )  (48) 

with 1 1 . .  , I /  denoting the norm on 2; and N ;  the operator a ( A S ;  K")+na(As; K"). 
As in Nelson (1 964) and Grimm and Ernst (1 974) we can find for any E > 0 a b, > 0 so 
that for any I@> E 9(Nf )  we get 

I I ( N  i- 1)'~21P~ll~~II~~IP)II+~.l l IP)II  (49) 

for the operator ( N ;  + 1)"' defined by a(As;  K")-(n + 1)'/'a(AS; K"). Combining 
(48) and (49) we can find for any E > 0 a number b, > 0 so that 

for any I@) E 9(Hir).  We show below that Z; satisfies for any ID) E 9 ( ( N ;  + 1)*/') an 
inequality 

I l ~ a m I I ~  CllW; + 1)'~'lP)Il (5  1) 

with a finite constant C. This means that 2; is defined at least on the dense domain 
9 ( ( N ;  + 1)"'). So we get with the above 9(2;)? 9 ( ( N ;  + 1)'" 2 9 ( N ;  + 1) = 
9 ( N ; ) ?  9 ( H f r ) ,  i.e. we satisfy the first condition 9(Z;) 3 9(Ht) for Z; being boun- 
ded relative to H;l. It poses no problem to verify that Z; is real whenever it is finite. 
Since 2; has a dense domain 9(X;), as shown above, it is symmetric on 2;. So it meets 
the second condition for relative boundedness. Combining (5 1) with (50) we get 

Choosing now E smaller than @IC we satisfy the third and last condition (cf Kat0 
1966, p 287) for Rfr + 8; to be self-adjoint. This proof cannot be extended to the case 
p = 0, and it seems that I?; is indeed not self-adjoint in this case. 

Finally we verify (5 1). We have by definition 

For given As and n the integral j dK"I . . . I'= d'kl. . . j d3k,l . . . I 2  defines the 
square of the norm 111 V)ll, of a vector IV) of the Hilbert space %(A5; n). In our case 
1 V )  is a finite sum Z (I Vi) + 1 Vi )) of other such vectors, namely the summands of the 
sums over U and a. So we can use the triangle relation @(lVi)+IV~>)11~d 
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[C(ll I Vi)lln +)I( Vi with respect to the sum over U and a.  This yields 

The K" are now the integration variables relative to the norm )I . . . [In. In the last term 
we have taken into account that after the use of the triangle relation the sum over v 
yields only a factor n. Now let the finite .Y?2(R3) norm of M(a,  a,; k) be denoted by 
m(a, a,). Applying the Schwarz inequality to the integration over k in the first term, 
and using m(a, b ) =  m(b, a )  and the fact that m(a, a,) factors out in the second term 
we find that the large round bracket is bounded by 

m(a, a)[ll(n + 1)1/2P(As : a, + a ;  K"")llnc1 +11n1'2P(As : a, -* a ;  K"-l)lln-l]. 

Inserting this into (54), carrying out the simple substitutions n + 1 -* n, n - 1 -* n, and 
using Iln 1'2 . . .I\ s Il(n + 1)1/2 . . .I1 we get 

2 

IlZIP>II'Q 4 1 f ( 1 f m(a, a , ) b  + 1)1/211P(As : a, + a ; K")lln) . (55 )  
A ' d n = O  a o l o = l  

Using now \E cidil S (X (di12)1'2 with respect to the sum over a and U, we get 

A'Eln=O f (2  a e I u = l  f m(a,aU)*)( a c I a = l  f (n+1)IlP(A':au-*a;Kn))I12,). (56) 

The first sum over U and a is finite, we denote it by m. In the second sum the sum over 
U yields a factor s. So we get 

llZ@)l12S4ms 1 (n+l) I IP(As::al-*a;Kn)I I~.  (57) 
A'GI n=O aeI  

We remember now that the sum over all A' can be written as an s-fold sum over 
a, E I, U = 1, . . . , s, (cf (36)). As the summand does not depend on a1 the sum over al  
yields a factor i, the number of elements in I. Substituting now a -* al we obtain the 
sum over A". Putting finally C2 = 4msi we get 

as stated in (51). 
It should be noted that the corresponding results of Grimm and Ernst (1974) have 

not only been extended from s = 1 to any s, but also to cases where the Schrodinger 
equation of one electron in an external field has a mixed spectrum or no eigenstates at 
all, as is frequently the case. This was necessary to show that the idea of the 
Weisskopf-Wigner approximation is indeed applicable to interacting fields. The 
above estimates of ZIP) have a remarkable parallel in the interaction of many atoms 
with photons (Stelzer er a1 1977) though the physical situation is quite different. 

For the reasons given or referred to in 0 1 we shall not further analyse the 
mathematical aspects of the operator expansions (11) or (49 ,  but show that they are 
physically interesting because certain Z; 'describe' autonomous classes of physical 
phenomena. 
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6. The concept of bound photons 

For this purpose we must first consider the physical aspects of the transition between 
the conceptual levels of ‘external charges’ and ‘external fields’. So we must discuss 
once more the Hamiltonian HT defined by (21a). This will lead us to a concept of 
‘photons bound to the external charge’ which in 0 7  will be extended to ‘photons 
bound to electrons’ and in 0 8 to ‘photons bound to the external charge as well as to 
electrons’. 

We saw in 0 3 that the conditions €or a ‘legal’ transition between the above ‘levels’ 
are the square integrability of f(k) and thus the unitarity of W { - f ( k ) }  as defined in 
(27), and the finiteness of E? as given in (22). So we come to consider the relations 

n$ := d3k1f(k)I2 = Z 2 e 2  d3k\ j (k)12/2w(k)3<~,  

E$ := J d3kw(k)lf(k)12 = Z2e2 J d3klj(k)12/2w(k)2<co, (5  9b) 

] d3kw(k)2\f(k))2 = Z 2 e 2  J d3klj(k)/2/2w(k)< CO, 

J d3ko(k)3/f(k)12 = Z2e2 J d3klj(k)I2/2 < 00. 

(59c) 

( 5 9 4  

Conditions ( a )  and (b )  are sufficient for Hf to be self-adjoint on 2”’ (cf (21~)) .  
Condition (c) is necessary and sufficient for the last two terms in (21a) to define a 
self-adjoint operator. For p = 0 the auxiliary condition ( d )  is sufficient for ( a ) ,  ( b )  and 
(c). For p = 0, ( b )  and (c) follow only from ( a )  and ( d ) .  This is another peculiarity of 
the infrared problem (cf (49)). 

Let us consider (59) from the physical point of view. From (19) and (23) we get 

This is the ‘static field energy’ of the Coulomb or Yukawa field of force which 
surrounds the charge Z e j ( x )  (cf (8)). Condition ( b )  therefore has a very reasonable, 
classical meaning. 

Condition ( a )  has an equally reasonable, but quantum mechanical meaning. From 
(21c) we see namely that -E: is the eigenvalue of Hf corresponding to the eigen- 
space 93s := W‘{- f (k ) } (X;  Olu)) where [U):= (1, 0, 0, . . . ) is the vacuum state in $R. 
W ~ { - f ( k ) } l u )  is a ‘modified vacuum state’ (Friedrichs 1953) or a ‘fully coherent state’ 
(Glauber 1963a, b) in 9~ if W ~ { f ( k ) }  is defined on ~ F R  by (24). Using (25) we find 
that E$ is equal to the expectation value (bsIHi Ibs) of the operator Hi of the ‘energy 
of the photons’ (cf (21a)) in any eigenstate Ibs) of Hi”. If Hf is the ‘governing total 
Hamiltonian’ of a physical system this system cannot make any ‘transitions’ between 
the eigenstates of Hf. The photons in these states thus cannot take part in any 
‘dynamical process’ which is governed by Hf alone. So they are ‘fixed’, ‘bound’ (Cook 
1961, Grimm and Ernst 1974, 1975,1977, Ernst 1976) to the external charge Zej(x) ,  
and cannot be removed from it within a theory which is governed by Hf alone. Their 
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energy E: can obviously be looked upon as some sort of binding energy, hence the 
index B. As this binding energy is not available for the dynamical processes governed 
by HT the spectrum of Hf should be shifted against the spectrum H ;  of ‘free’ photons 
by the amount -E:. This is the meaning of (21c). The ‘mean number of photons 
bound to Zej(x)’ should obviously be defined as the expectation value (bslN‘\b,’) of 
the photon number operator N 5  in any eigenstate lbf) of Hi”. N s  is defined on 92” by 

(cf (21~) ) .  Using (25) and ( a )  we find (b$V’lb;) = n:. Condition ( a )  means therefore 
that a finite mean number of photons is being bound to Z e j ( x ) .  

These bound photons ‘build up’ the Coulomb-Yukawa field of force that sur- 
rounds the external charge. To show this we compute the expectation value of the 
operator A(x)  of the ‘potential amplitude of R’ in any eigenstate 16;) E By. Using (25)’ 
(22), (19) and (8) we get 

(bi  1A (x ) I  b f ) = (U I wR{ f (k  ))A R ( x  WR{-f(k )} 10) 

1 - - --- I d 3 k ( e i k ’ X f ( k ) + ~ ~ ) / ( 2 w ( k ) ) ” 2  =A’(x)  
(2.ir) 

- - --&- 1 d3k(eik.rr(k)+cc)/2u(k)2 
(2.ir)3/2 

AR(x)  is defined on gR by (186). It is clear that the potential V ( x )  and the field of 
force it represents must be considered as being built up by the photons bound to 
Z e j ( x ) .  The energy of this field is given by the right-hand side of (60) and therefore 
equals the binding energy of the photons which build it up. 

We note without proof: the ‘full coherence’ of [by) guarantees for the expectation 
value (62) the smallest quantum mechanical variance that is possible at all. There are 
of course infinitely many other states in 2” which have the same V ( x )  as expectation 
value of A(x),  but the variance of this expectation value is always greater than the 
variance of V ( x )  as defined by (62). The ‘quantum mechanical fluctuations’ of this 
‘field’ are therefore the weakest field fluctuations which are possible at all. Formally, 
the latter are of course infinite, but for any proper ‘spatial average’ of A(x)  they are 
finite and still minimal. In this sense the bound photons build up the best ‘classical 
fields’ like V ( x )  that are possible in a quantum theory. 

Let us consider in more detail the mean number of bound photons. Inserting (19) 
into (59a) we get 

= 1 d3x d3x’j(x)j(x’)Ko(p Ix - xrl)/27r 2 . 2 
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&(z) is the modified Hankel function as tabulated and plotted, for example, in 
Jahnke, Emde and Losch (1960). For real z > 0 it is positive and monotonically 
decreasing, for t + 0 it behaves like ln(2/ y z )  with Euler’s constant y = 1.781 . . . , for 
z i, CO like e-’(7r/2~)’’~. 

We see that n: increases logarithmically if the charge is gradually concentrated 
into one point, say j ( x ) + S ( x ) .  This is an ‘ultraviolet divergence’ because for j ( x ) +  
S(x) we get j ( k ) +  l / ( 2 ~ ) ~ ’ ~  and the integral (59a) for n; diverges from the contribu- 
tions of large photon momenta. As an infinite number of bound massive photons is 
clearly absurd, we must exclude the case of external point charges for good physical 
reasons as well as by the requirements of a ‘legal’ transition between the ‘levels’ of 
external charges and fields. For p = 0 this argument is clearly not so stringent relative 
to n:, but the ultraviolet divergence of E: is as serious as before. This implies 
obviously the abandonment of the notion of the classical Coulomb or Yukawa force 
between finite point charges. However, we do retain the Coulomb-Yukawa force as 
an ‘infinitesimal force element’ acting between the infinitesimal charge elements of a 
square integrable charge distribution. This is indeed the ‘basic interaction ingredient’ of 
our general Hamiltonian H, as shown by (20) for j ( k ) =  ~/ (Z!T)~’~ .  If j ( x )  is under- 
stood as an ‘approximate representative’ of a quantum mechanical system (see the 
appendix) its square integrability is very natural, so we adopt it for the remainder of 
this work. But for obvious physical reasons we also require the existence of a finite 
total charge Q = Ze  l d3xj(x), this integral being understood in the Lebesgue sense so 
that also 5 d3xIj(x)I <CO and j ( k )  is continuous at k = 0. 

For p = 0 this guarantees only the absence of ultraviolet divergences. Equation 
(63) still shows a logarithmical infrared divergence which disappears only for Q = 0. 
As the binding energy of the infinitely many bound photons remains finite we shall 
not restrict the discussion to the harmless case Q = 0. Our calculations are therefore 
‘formal’ and take place outside the Hilbert space 2, but they remain well defined and 
unique in the greater vector space V introduced for this reason in 0 2. The ‘detour 
through V’ will lead us back into 2t in some special, but very important cases. Of 
course, we may also consider p as a renormalisation constant and go back to the limit 
cc. + 0 only in the final results. Both ‘methods’ yield the same result. 

7. A quantum theory of the self-energy of the electron 

We return first to the auxiliary conceptual level of external fields and consider in detail 
the lowest coarse grain Weisskopf-Wigner theory defined in 8 5 by i = s and hence 
1 = A’. For s = 1 this corresponds to a known theory (example 3 of Grimm and Ernst 
1974, figure 5 of Grimm and Ernst 1977) which shows phenomena of photon binding. 
So we can certainly expect such phenomena in our theory. It is surprising, however, 
that the simple assumption i = s leads to a satisfactory and complete theory of the 
self-interaction effects of our electrons as well as of their mutual interaction, the latter 
of course only for s > 1. This proves that the ‘expansions‘ of 0 4 and 0 5 employ and 
reveal ‘natural structures’ of our interacting fields. 

The condition i = s implies the assumption that s electrons are considered in some 
given state U(As;XE)~5VE which is ‘prescribed’ by the choice of I = A ”  = 
( a l ,  . . . , a,). This is the state obtained by occupying the one-electron states 
ual(x) ,  . . . , u,,(x) with one electron each. But these electrons are still allowed to 
interact with the photons. The Hamiltonian of this interaction is determined by the 
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choice of I and reads for the present case I = A s  to 

( R h ) ( A s ;  K ” )  

= ( ~ ( k l ) + .  . . + @ ( I C , ) +  T(A’))a(As ; K ” )  
+ ( n  +l)’’* 1 d 3 k M * ( A s ;  k ) a ( A S ;  k,  K “ )  

We have introduced the abbreviations (cf (38) and (41)) 

MI(k):=M(A’; k ) : = M ( ~ l ,  a i ;  k ) + .  . .+M(u,, U,; k ) ,  

TI :=T(AS) :=T(a l ,a i )+ .  . .+T(u , ,u , ) -E~.  

(65a 1 
(65 b 1 

The point of the condition i = s is that the sums over a in (39) and (40) are restricted 
to a E I = A s  so that as a consequence of the Pauli principle only the terms a = am are 
different from zero (see remark (iv) following (41)). The remaining sum over U is 
contained in the sums in (65). In terms of (45) the interaction part of (64) is given by 
the term A s  = I, and by restricting the sum over all a to the sum over a E I. 

In analogy with (21a) the Hamiltonian defined by (64) can be written in the form 

Z?; = TI + J  d3kw(k)a’(k)a(k)+ d3k(MT ( k ) a ( k ) + M I ( k ) ~ + ( k ) )  (66) 

with photon creation and annihilation operators restricted to Xi := %(As)@ ,C&, A s  = 
I. As in 8 3 we ‘complete the square’ by writing 

=E:+ J d3kw(k)(a t (k)+MT ( k ) / w ( k ) ) ( ~ ( k ) + M r ( k ) / w ( k ) )  (67) 

with the definitions 

E: := I d 3 k / M ~ ( k ) ( ’ / ~ ( k ) .  (68) 
B E;::= TI-Er ,  

As in 0 3 the completion of the square is legitimate if M r ( k ) / w ( k )  is square integrable 
and E: <CO. In this case the Weyl operator W i { M l ( k ) / w ( k ) }  exists and is defined on 
2; in analogy to (24) and we can write 

g ;  = w ; { - M I ( k ) / w ( k ) } ( E ;  + J d3kw(k)at(k)a(k)) W;{Mr(k) /w(k)} .  (69) 

We see that Z?; assumes an eigenstafe 

16s) := U ( A  ; X s  ) O WR{ -MI ( k ) / w  (k  )} 1 U), U(A’;  X s )  = U ( I ;  X ’ ) ,  (70) 

to the eigenvalue E;. In contrast to 8 6 this eigenvalue is not degenerate. The 
existence of these eigenstates and eigenvalues, one in each Xi with arbitrary s and 
arbitrary I with i = s, is the main result of this work which requires careful discussion. 

For this we assume first that the indices a l ,  . . . , a, contained in I refer to eigen- 
states of the Schrodinger equation (32). So we consider an s-electron ‘atom’ in the 
state U ( A s ;  X ’ )  in which the levels ua , (x ) ,  . . . , u , ( x )  of the one-electron Schrodinger 
atom are occupied with one electron each. The eigenvalue of Z?; is then given by 

E;  := Eal + . . . + Ea, - E,B -E:, (71) 
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as seen from remark (ii) following (41). E$ has been discussed in § 6, it is independent 
of I. E,, + . . . + E ,  is the eigenvalue of the s-electron atom in the state U(A’ ; X ’ )  in 
the case of no  interaction of the electrons with themselves and with each other. -E: 
is the ‘correction’ of this eigenvalue due to the self- and mutual interaction of the 
electrons as far as is achieved in the present Weisskopf-Wigner approximation. 

We consider this correction first for s = 1, the case of a one-electron atom with the 
external potential V ( x ) .  I coincides in this case with the index a of some chosen 
eigenstate u,(x) .  Inserting (41) into (65a) and this into (68) we get E:  =E: with 

We refer to E: as the self-energy of a single electron in the state u,(x).  It is computed 
like the energy of the classical Coulomb-Yukawa field of force that surrounds a 
classical charge density -elu,(x)12, (cf (60)). So it is the self-energy of a ‘smeared’ 
electron in the sense of Schrodinger’s (1926) pre-statistical interpretation of quantum 
mechanics, the term self-energy being used in its classical sense (cf § 10). It is easily 
verified that E: is also the expectation value of the operator of the energy of the 
photons in the eigenstate 16:) = 16:) of the Hamiltonian A: =Ab. So it can be 
considered as the binding energy of photons bound to the bound electron. Equation (71) 
tells us that the eigenvalue E, -E: of the eigenstate u, (x)  of this electron is shifted by 
the self-energy of the electron due to photons bound to it. This shift is finite because 
the pre-statistical Schrodinger electron is smeared out and so has lost its ‘point- 
likeness’. The number of photons bound to the bound electron is (cf § 6) 

f i :  := (St,lNf, (6:) 

= 1 d3klM(a, a ;  k ) 1 2 / ~ ( k ) 2  

(73) = t / d3x 5 d3x’ ( -e lu , (x )12) ( -e~u, (x ’> lz>~o( / -  /x -x’/)/277 2 . 

N i  is defined on the Hilbert space 2; in analogy with (61). The last expression has 
been obtained by inserting (41) into M ( a ,  a ;  k )  and then proceeding as in (63). The 
photons bound to the bound electron build up an ‘eigenpotential of the electron’, 
V f ,  (x), in the sense of an expectation value of the potential operator A ( x )  = A b ( x )  on 
2; in the state 16;) of the bound photons: 

V f ,  (EIAf,@)IZ) = ( V I  W R { M ( ~ ,  a ;  ~ ) / w ( ~ ) } A R ( ~ ) W R { - M ( ~ ,  a ;  k ) / ~ ( k ) I / v )  

(cf (8)). This is clearly the potential we would ascribe to a smeared, pre-statistical 
Schrodinger electron. But as a quantum mechanical expectation value it is compatible 
with a statistical interpretation as well. A classical potential V ~ ( X )  is clearly not 
compatible with a statistical charge density -elu,(x)i2. Note that the energy of the 
‘field’ Vb (x) is again the binding energy of photons building it up. 
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Comparing (73) and (74) with 9 6 we see that -eiu,(x)12 has taken over the role of 
a charge density which binds photons. The square integrability of u,(x) ,  i.e. the linear 
integrability of I U , ( X ) ~ ~ ,  does not yet guarantee ii: <CO, i.e. the absence of ultraviolet 
divergences. However, as ] U ,  (x)I4 is linearly integrable for practically any reasonable 
external potential V ( x ) ,  the absence of ultraviolet divergences is guaranteed in 
practically any case of interest though in principle we must postulate it in the form of 
additional conditions on j ( x ) .  As U , @ )  is normalised to 1 the infrared problem cannot 
be postulated away so easily. The number of massless photons bound to a bound 
electron is always infinite. However, on the ‘correct’ level of external charges the 
infrared problem will disappear at least in the case of a neutral atom, as we shall see. 

We want to emphasise that we do not advocate the pre-statistical interpretation of 
Schrodinger. On the contrary, our results are compatible with the Born interpretation 
and extend the latter to the notion of ‘forces’ and ‘Coulomb fields’. 

We consider now the case s > I, Z = (a l ,  . . . , a , ) .  The correction E: of the energy 
E,, + . . . +Eas of the eigenstate U ( A s ;  X s )  of s electrons without self- and mutual 
interaction is given in (68). Inserting (65a) we find 

S 

= E:-+ 1 1 E:. (75) 
u=l u=l s 4 u  

E: 3 0 is short for the double integral in the case (+ # T. It can obviously be under- 
stood as the static Coulomb-Yukawa interaction energy of the infinitesimal charge 
elements belonging to Schrodinger electrons in different states u,,(x), uar(x),  i.e. to 
‘different electrons’. We learn that the energy correction E: of the s-electron state 
U ( A s ; X s )  is the sum of the self-energies of the single electrons plus the mutual 
interaction energies of all pairs of electrons, each pair being counted once. Whatever 
the nature of this interaction, it is in any case a ‘two-body interaction’. Its close 
relation to the Coulomb-Yukawa force will become clear in § 9. 

As E? is again the expectation value of the operator of the energy of photons in 
the eigenstate 16;) of n; it can again be considered as the binding energy of photons 
bound to the s electrons in the state U ( A s ;  X’) with A s  =I. Equation (75) tells us 
that this binding energy is greater than the sum of the binding energies of photons 
bound to ‘isolated’ electrons in the corresponding states. This excess causes the 
interaction between the electrons. 

The number of photons bound to s electrons in the state U ( A s ; X s )  shows a 
similar excess. We find that 

As K o ( z ) a  0, all terms in the double sum are non-negative. The terms T = (+ yield the 
sum of the numbers of photons bound to ‘isolated’ electrons. The other terms account 
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for photons bound in addition which obviously cause the excess of binding energy 
mentioned above. 

Vi@):= (b;IA;(x)lfi) 

The potential built up by these bound photons is 

= -4 I d 3 k [ e i k x M ~ ( k ) / ( 2 w ( k ) ) ” 2 + c c ]  

= v:, (x)+. . . + v:, (x). (77)  
The additional photons do not explicitly contribute to V;(x ) ,  but their energy is 
contained in the field energy of V ; ( x )  which is greater than the sum of the field 
energies of the single terms in (77).  

8. A quantum theory of the screening of an external charge by bound electrons 

So far we have emphasised that bound electrons themselves ‘bind’ photons which 
leads to the various self-energy effects discussed so far. These energy corrections 
indicated already that this binding of photons must also have some other 
consequences. First we consider the screening of the external charge by the electrons 
bound to it. 

It is clear that V ( x ) +  V; (x )  is the first candidate for the ‘total potential of an 
s-electron atom in the state U(A’;  X‘)’. But on the conceptual level of external fields 
V ( x )  is a classical field which in principle is free of quantum fluctuations whereas 
V ;  (x) is a quantum mechanical expectation value which in principle is equipped with 
quantum mechanical variances. In our case the corresponding quantum field fluctua- 
tions are even infinitely strong. The sum V ( x ) +  Vi&)  therefore makes no sense. 

We remember now, however, that G; is a part of the auxiliary Hamiltonian B’ 
which was introduced in (31) for convenience. The part E?; of the true H’ which 
corresponds to I?; is obviously given by 

H; = W - f ( k ) } m U f ( k ) } ,  (78) 
(cf (26)). Noting that each minimal I = A ”  defines a base vector U(A’;  X’) of 2t’: the 
operator W“{-f(k)} can be considered as the direct sum of the W;{-f(k)} defined by 
(25) on the Hilbert spaces %(AS)@&. So in (78) we may replace Ws by W;. Using 
the relation 
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to the same eigenvalue E ;  as the auxiliary The physical structure and explanation 
of the eigenvalue can be taken over from § 7. But the true eigenstate Ibi) is different 
from the auxiliary 16;)’ and this difference is of decisive importance as we shall see 
now. 

We note first that the screening of the external charge Z e j ( x )  by the electrons 
bound to it is achieved automatically on the correct conceptual level of external 
charges. As ‘total potential of the s-electron atom in the state U(A’;  X’))’ we must 
obviously take the expectation value of the potential operator Ai(x) in the true 
eigenstate Ib;) of Hi. B y  means of (81) we get for this V ( x ) +  VI@). This sum is now 
acceptable because both summands are quantum mechanical expectation values of the 
same kind with (infinite) variances of the same kind. A glance at (8), (74), and (77) 
shows that V ( x )  and VS(x) have opposite signs if Zej (x )>O,  as it is natural, for 
example, if Z e j ( x )  ‘describes’ a nucleus with 2 proton charges. For s = 2 the 
long-range tails of V ( x )  and V i @ )  cancel so that V ( x ) +  V ; ( x )  falls off at large 1x1 like 
I x / - ~ .  Therefore, if the ‘atom’ is considered from the outside it appears as ‘neutral’ 
because the nuclear charge is completely screened by the electrons. 

As Ib;) is again an eigenstate of the ‘governing Hamiltonian’ Hi the total potential 
V ( x ) +  V i ( x )  is again ‘built up’ by photons which are now simultaneously bound to the 
electrons and the external charge. The mean number of these photons is 

(83) = A y  +A?’ - Z e  d3x’ j (x) lu, (x ’ )12Ko(p~x-x‘ l ) /2 .rr  2 . 
u = l  

For j ( x ) a O  this is smaller than the sum n: +A?’ of the numbers of photons bound 
separately to the ‘nuclear’ charge and to s electrons. The second integral over k shows 
further that n?’ remains finite in the case 2 = s of a neutral atom even for massless 
photons. The integral over x defines a continuous function of k which vanishes at 
k = 0 so that the integral over k exists. This means that the infrared problem does not 
show up in the case of a neutral atom. 

Note that n?’, considered as a function of s, assumes a minimum roughly for s = 2. 
As has for any p > 0 a maximum at k = 0, the main contributions to the 
integral over k come from the region about k = 0 where the integral over x assumes a 
minimum for s = Z. For p = 0 this minimum is zero and compensates the infrared 
divergence of /kl-3 to such a degree that nFs remains finite. 

The energy of the photons bound simultaneously to Z e j ( x )  and to the electrons in 
the state U(A’;  X ’ )  is given by 

E: :=(bi l l  d3kw(k)a t (k)a(k)Jb;)  
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For Zj (x ) sO this is smaller than E: +E:, the sum of the binding energies of photons 
bound separately to the external charge and to the electrons. Considered as a function 
of s, E:, also has a minimum around s = 2, but it is less pronounced than the minimum 
of ny, as seen by a comparison of the second integrals over k in (84) and (83). 

If we assume that nature seeks to attain a minimum of the total binding energy, or, 
still more pronounced, a minimum of the number of bound photons, we can conclude 
that a state with s < 2 attracts further electrons whereas a state with s > Z repels them. 
The idea of attractive or repulsive ‘forces’ can so be ‘deduced’ from an extrema1 
principle related to bound photons. Note also that the binding of the electrons 
appears here as a consequence of the simultaneous binding of photons to the external 
charge and the electrons. 

All photon binding phenomena occur also if some or all indices a l ,  , . . , a, in I do 
not refer to eigenstates of the Schrodinger equation (32). The difference will show up 
in higher-order corrections (greater I in the sense of § 5 )  where ‘transitions’ between 
the s-electron states U ( A s ; X X “ )  are allowed to occur. If U ( A s ; X X “ )  contains only 
eigenstates these transitions are governed only by the interaction Hamiltonian. In the 
general case the non-diagonal elements T(a,  6)  of the Hamiltonian of the ‘free’ 
electrons (cf (39)) have also an influence on these transitions. The ‘stability’ of the 
eigenstates 16;) can therefore be expected to be much weaker for ‘free’ than for 
‘bound’ electrons, but practically all work on these transitions remains to be done. 

9. Comparison of the ‘force due to bound photons’ with the conventional Coulomb- 
Yukawa force 

The discussion of the binding energies E: and E:, showed already that the bound 
photons act as a mediating agent between the electrons which resembles to some 
degree a repulsive Coulomb-Yukawa ‘force’. To learn more about this mechanism we 
now compare it with the usual Coulomb-Yukawa force. 

For this purpose we ‘derive’ first from the present theory the familiar non- 
relativistic field theory of Jordan and Wigner (1928) which comprises the usual 
quantum theories of s = 1’2 , .  . . electrons with Coulomb-Yukawa interaction. 
Consider the Heisenberg equations 

oA(x, t ) =  -el/l+(x, r)l/l(x, t )  (85 1 
which correspond to the auxiliary Hamiltonian given in (31). If 
{$‘(x, t ) ,  $(x, t ) ,  E(x, t ) ,  A(x, t ) }  is the ‘correct’ solution of (2), the correct solution of 
(85) is {&‘(x, t )  = W{f(k ) )$ (x ,  t )  W { - f ( k ) } ,  . . . I ,  with W { f ( k ) }  defined in (25). The 
initial conditions for this solution read accordingly. We ignore now the correct initial 
conditions as well as the correct equal-time commutation relations and take as an 
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‘approximate’ solution of (856) the Poisson-Yukawa integral 

Al(x, t ) : =  e d3x’Jt(x‘, t )$ (x ‘ ,  t )  exp(-CLIx -4) J 4+ -x’I . 

This is an ‘approximation’ in the same sense in which the Laplace operator A is an 
‘approximation’ of the d’Alembert operator 0. We replace, in particular, the ‘retar- 
ded action’ between S and R by an ‘action at a distance’. If (86) is inserted into (85a) 
in the order as given we get a Heisenberg equation for the ‘approximate’ $l(x, t )  
corresponding to the ‘approximate’ Al(x,  t ) .  If the commutation relations ( la) are 
retained for the field operators 4; (x, t ) ,  $l(x, t ) ,  this Heisenberg equation follows 
from the Hamiltonian 

A 
2M G1 := J d3x& (x)( - - - e V ( x ) )  Jl(x) 

As the Schrodinger operators &(x), 61(x) must satisfy (4a )  we may define them by 
(15), but only on ss which is the natural Hilbert space of S alone. I?, is the 
Hamiltonian of the non-relativistic field theory of Jordan and Wigner (1928) of 
‘electrons with Coulomb-Yukawa interaction’ (with spins omitted). Its interaction 
part, the second term in (87), looks like a tremendous four-fermion interaction and 
has been discussed from this point of view by Wahl (1975) (with a special V ( x ) ) .  

We look at Al from another point of view. We note that it commutes with the 
electron number operator (16) so that it ‘decays’ necessarily into a direct sum of 
Hamiltonians Ai which act on the sectors Xi of &. By a straightforward calculation 
we find H? = 0 and 

This operator is understood as acting on an element cp(xl, . . . , x,) of 2’:. So it is the 
conventional Hamiltonian of s electrons in the potential V ( x )  which interact with the 
classical Coulomb-Yukawa force. Its ‘derivation’ from our I? shows that our theory 
generalises the concept of the classical Coulomb-Yukawa force and thus in some 
sense ‘contains’ it. 

The second term of (88), -n&, is obviously the operator of the Coulomb- 
Yukawa interaction of s electrons. It contains nothing that could be related with the 
self-energy of the electrons because the terms u = 7 do not occur. By comparing the 
expectation value -E& of in the state U(A‘;  X’) of these electrons with the 
correction -E? of their energy E a , + .  . .+Ea, due to bound photons we can learn 
something about the following problems. How much of the usual concept of the 
Coulomb-Yukawa force is still contained in the quantum field theory defined by (2 ) ,  
and how much of this is contained in the lowest order of the coarse grain expansion of 
Q .5? The answers are obviously decisive for the ‘replacement of the classical Cou- 
lomb-Yukawa interaction by an interaction mediated by bound photons’, as well as 
for the quality of the approximation method developed in § 4 and § 5 ,  and the interest 
it deserves. 
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We consider first some details. By definition we have 

Using the expansion law of determinants and introducing 

E: := J d3k\M(a,, a,; k) l* /w(k ) ,  (90) 

the shift of the line corresponding to the transition u,(x)c*u,,(x) of the one-electron 
atom (cf KallCn 1958, Grimm and Ernst 1975) or, more precisely, the threshold 
energy (Grimm and Ernst 1975) of this transition, we find after some straightforward 
computation 

E : ~  = ( E B , - E E ) .  
U = l  *<U 

Comparing this with (75) we get finally 
S S 

E y = E & +  EZv+ 1 E%. 
u=l U = l  T<U 

All terms are non-negative and finite. We recall now that the widely unsolved, 
classical problem of many-electron atomic physics is the computation of the eigen- 
values of gi. If this problem is attacked by considering -fi& as a perturbation of 
the first term of (88), the first-order perturbation correction of the ‘unperturbed’ 
eigenvalue E,, + , . , +E,, is -E:y, as computed above. It follows therefore from (92) 
that the correction -E? of this eigenvalue due to photons bound to the electrons is 
always larger in magnitude than the first-order correction -E& from the traditional 
Coulomb-Yukawa force. Equation (92) shows that the difference is due to typical 
quantum effects which are not contained in the traditional theories of electrons ‘with 
classical Coulomb-Yukawa interaction’. 

It is suggestive to assume that the eigenstates 16;) of the Hi corresponding to the 
eigenvalues E,, + . . .+E,, -E? are the ‘true’ eigenstates of an s-electron atom. The 
main arguments in favour of this hypothesis are: (i) the expected ‘stability’ of these 
eigenstates under higher-order corrections; (ii) the perfect screening of the ‘nuclear’ 
charge Z e j ( x )  by the electrons bound to it by means of bound photons. This shows in 
particular that higher-order corrections should not lead to additional energy shifts 
because the latter are related to additional bound photons which in general should 
destroy the perfect screening already obtained. (iii) The ‘true’ eigenvalues lie always 
below the values obtained from the traditional Coulomb-Yukawa interaction in 
first-order perturbation theory. The hypothesis thus does not necessarily lead to 
contradictions of experience. (iv) A reason for wishing this hypothesis to be true is that 
even the ‘true spectrum’ of the iron atom could be computed numerically because the 
calculation of the terms in (92) is not difficult for an electronic computer. 

At this point we must clearly remember that the present model is not yet realistic. 
But there are so many analogies to the covariant Gupta-Bleuler form of quantum 
electrodynamics that an extension of our methods appears to be highly prospective. 
We are well aware of the many problems ahead (state space ‘with indefinite metric’ 
instead of our g ~ ,  charge conservation instead of our electron number conservation, 
to mention the severest only). 
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10. Comparison with the concepts of the self-energy of an electron in classical and 
quantum electrodynamics 

We compare finally the concept of the self-energy of an electron as introduced in 
00 7-9 with the concepts used in classical and quantum electrodynamics. 

Let us recall first that the classical self-energy of an electron at rest (cf Born and 
Infeld 1934, Sommerfeld 1961, Bopp and Lutzenberger 1974, and the literature cited 
there) is the electrostatic field energy $Jd3xE(x)’ of the Coulomb field E ( x ) -  
Ir - X, I-’ surrounding an electron (=‘point charge’) at X,. Electrons at different 
positions X, have the same self-energy, and the self-energy of moving electrons is 
computed by means of Gallilei or Lorentz transformations. Considering an electron 
in its phase space C#J we can therefore say that even classically its self-energy depends 
on its instantaneous ‘state’ (Pa, X,) in 4, although it may be degenerate with respect to 
the position X,. 

As any ‘quantisation’ consists primarily of the replacement of the classical state 
space q5 by the quantum mechanical state space, a Hilbert space (in our case: 4 + &), 
the closest analogue of the self-energy of an electron in some classical state (Pm X,) E 
q5 is the self-energy of an electron in some quantum mechanical state U,(X)E Xi. The 
results of 09 7-9 suggest a very convincing definition of this self-energy, namely as the 
classical self-energy of a ‘smeared electron’ in the sense of Schrodinger’s (1926) 
pre-statistical interpretation of quantum mechanics. The discussion of (72)-(74) 
showed that this allows a deep-lying, fully quantum mechanical interpretation as well, 
namely as binding energy of photons bound to the electron and building up the latter’s 
‘eigen-Coulomb field’ in the sense of a quantum mechanical expectation value. This 
self-energy is invariant under translations in the sense that the translated state 
u,(x -X,) leads to the same self-energy as u,(x). 

If El(x) ,  . . . , Es(x) are the eigen-Coulomb fields of s electrons at rest, their 
common Coulomb field is E l ( x ) + .  . . +Es(x ) ,  and their common self-energy 
iJd3x(El(x)+.  . .+E,(x))’ is greater than the sum $Jd3x(E1(x)’+. . .+E,(x)’) of the 
individual self-energies. We saw in 0 7 that the concept of bound photons leads to an 
exactly analogous situation. 

The individual self-energy of a classical electron is infinite due to its ‘point- 
likeness’. If quantisation, i.e. the replacement 4 + &, is taken seriously, this point- 
likeness disappears once and for all because all information on the electron is 
contained in u,(x) which is not related to some particular point (Pa,&) of the 
classical phase space. In this sense the present approach has solved the problem of 
infinite self-energies. We are of course aware of the fact that this implies a certain 
semantic decision, but for the many good reasons discussed in § §  7-9 this decision 
appears to be appropriate. 

This implies, in particular, the decision that the self-energy of an electron in some 
proper state of the Hilbert space should be defined before one looks at singular cases 
like an electron localised in some point X ,  of the position space or in some plane wave 
state. The former case could be described formally by I U , ( X ) ) ~  = S(x -X,) and leads to 
the classical divergence. However, there is no sequence of normalised Hilbert vectors 
whose squares converge in some reasonable sense against S ( x - X , ) .  The case of a 
plane wave is similarly not approachable within the unit sphere of the Hilbert space. 
In the sense of the usual box normalisation we might put u, (x)  = eir‘pa/~”2 where 
denotes the volume of the chosen box, and in view of later transitions to an infinite 
box we may restrict spatial integrations to one box. Evaluating (72) in this sense we 
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find E f :  = e’/(2pZSZ). This allows no unambiguous limit for SZ + 00 and p + 0. In view 
of the long range of the Coulomb force it is further questionable whether the neglect 
of the ‘other’ boxes is justified even if they are at infinity. 

In terms of Feynman graphs the self-energy of an electron is usually discussed in 
connection with the familiar self-energy graph corresponding to the element of the 
S-matrix for the transition from a state with one electron in some given plane wave 
state and no photons at t =  -00 to the same state at t =+a. This implies the 
assumption that initially and finally the electron is ‘bare of photons’. In our approach 
the self-energy problem is formulated differently. We ask for a state of one electron 
(maybe even a plane wave state) and photons such that the system evolves in time by a 
pure phase factor e-irE. The initial state is therefore not specified by our question; it is 
to be determined by the answer we expect. So we get a typical eigenvalue problem. In 
this connection our present results mean the following. To any given Hilbert state of 
the electron one can indeed find a partial Hamiltonian so that a state of infinitely 
many photons can be constructed which, under the action of that partial Hamiltonian, 
evolves in time by a pure phase factor. In fact, an eigenstate of the total Hamiltonian 
is uninteresting because no transitions to and from it are possible at all. Since under 
the action of this partial Hamiltonian the electron remains in its initial state, only the 
four-momentum transfer q = 0 contributes to its self-energy in our sense. But as 
infinitely many photons exist already in the initial state, these contributions are 
sufficient to equip each electron with its own Coulomb field and to establish the 
Coulomb interaction between the electrons. 

These comparisons show that the intriguing concept of the self-energy of an 
electron, as introduced here, cannot be expressed easily and in an unambiguous way in 
the terminology of Feynman graphs. We must emphasise again that the hierarchy of 
approximations described in 0 5 and § 6 is self-reliant, autonomous, and independent 
of the hierarchy of perturbation theoretical approximations as expressed in terms of 
Feynman graphs. Thus the approach could be a real alternative to perturbation 
theory. The purpose of this work has been to show that it is a prospective alternative. 

Appendix. The present theory as a singular case of three interacting fields 

Consider three interacting fields S ,  R, S ’ ,  to be governed by the Heisenberg equations 

d A 
dt ( 2M 

i-$(x, t )=  - - -eA(x ,  r ) )$ (x ,  t ) ,  

d 
i-$’(x, t ) =  h{eA(x, t ) }$’ (x ,  t ) .  
dt 

$(x, t )  and A ( x ,  t )  as well as $’(x, t )  and A ( x ,  t )  shall satisfy the commutation relations 
(1) and all commutators of operators referring to S and S‘ shall vanish. S’ is therefore a 
second field of fermions of charge e > 0. For e = 0 the system ‘decays’ into three 
independent systems S ,  R, S’. We note that the quanta of S and S’ interact only by 
means of the quanta of R. Equation (A.2) tells us that both S and S’ constitute the 
‘source’ of R whereas the field amplitude A(x, t )  of R plays the role of a ‘potential’ for 
S as well as for S’ (cf (A.l), (A.3)). The Hilbert space of the interacting system is 
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obviously the product 2 := &C3 ~ R O  9 s -  of the Fock spaces of the interacting part- 
ners. 

Assume now that S’ is ‘degenerate’ so that its quanta can neither move nor react in 
any way on the quanta of R and S. This is obviously the case if h{eA(x ,  t ) }  = 0 so that 
the Heisenberg operator $’(A-, t )  of the field amplitude of S’ is equal to the Schrodinger 
operator $’(x). So we get in (A.2) a stationary source term e$“(x)$’(x).  In the 
Schrodinger picture, the condition d$’(x, t)/dt = 0 means that all Schrodinger ampli- 
tudes of any s‘ quanta of S’ are independent of t. So, whatever the initial state 1 ~ ’ )  of 
S’, it remains in that state for ever. The ‘accessible’ part of the Hilbert space of the 
system ( S ,  R, S ’ )  therefore is ~ s O ~ R O  1 ~ ’ ) .  As soon as Ix’) has been specified, S’ 
behaves like a system with a one-dimensional Hilbert space in which every operator 
equals its expectation value. So we can replace in (A.2) the operator e$’(x)$‘(x) by its 
expectation value in 1 ~ ’ ) .  If the latter is denoted by Z e j ( x )  we get (2), i.e. an ‘external 
charge density’, but we do not get an ‘external potential’ like (8). We note further that 
for a great manifold of states I x ’ )  of S‘ the above expectation value Z e j ( x )  can be 
assumed square integrable. Point sources are quite unnatural in this connection. 
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